exploratory analysis 2

A short description of the post.

  1. Load the R packages.
  1. Quiz Questions

Question: modify slide 51

ggplot(data = mpg)+
  geom_point(aes(x = displ, y = hwy)) +
  facet_wrap(facets = vars(manufacturer))

Question: modify facet ex 2

ggplot(mpg) + 
  geom_bar(aes(y = manufacturer)) + 
  facet_grid(rows = vars(class), scales = "free_y", space = "free_y" )

Question 3

spend_time <- read_csv("spend_time.csv")
p1 <- spend_time %>% filter(year == "2017") %>%
  ggplot()+
  geom_col(aes(x = activity, y = avg_hours, fill = activity)) +
  scale_y_continuous(breaks = seq(0,6, by = 1)) +
  labs(subtitle = "Avg hours per day: 2017", x = NULL, y = NULL)
p1

p2  <- spend_time  %>% 
ggplot() + 
  geom_col(aes(x = year, y = avg_hours, fill = activity)) +
  labs(subtitle  = "Avg hours per day: 2010-2019", x = NULL, y = NULL) 

p2

p_all  <-  p1 / p2

p_all

p_all_no_legend  <- p_all & theme(legend.position  = 'none')

p_all_no_legend

p_all_no_legend  +
 plot_annotation(title = "How much time Americans spent on selected activities", 
                  caption = "Source: American Time of Use Survey, https://data.bls.gov/cgi-bin/surveym?tu")

Question: Patchwork 2

p4  <-
spend_time %>% filter(activity =="food prep") %>%
ggplot() +
  geom_point(aes(x = year, y = avg_hours)) +
  geom_smooth(aes(x = year, y = avg_hours)) +
  scale_x_continuous(breaks = seq(2010, 2019, by = 1)) +
  labs("subtitle = Avg hours per day: food prep")

p4

p5 <- p4 + coord_cartesian(ylim = c(0, 6))
p5

p6   <- 
 spend_time  %>% 
ggplot() + 
  geom_point(aes(x = year, y = avg_hours, color = activity, group = activity)) +
 geom_smooth(aes(x = year, y = avg_hours, color = activity, group = activity)) +
  scale_x_continuous(breaks = seq(2010, 2019, by = 1)) +
 coord_cartesian(ylim = c(0, 6)) + 
  labs(x = NULL, y = NULL) 

p6

(p4 | p5)/ p6

ggsave(filename = "preview.png", 
       path = here::here("_posts","2021-04-06-exploratory-analysis-2"))