Joining Data

Code for quiz 6, more dplyr and out first interactive chart using echarts4r

Steps 1-6

  1. Load the R packages we will use.
  1. Read the data in the files ‘drugs_cos.tsv’ , ‘health.csv’ in to R and assign to the variables ‘drug_cos’ and ‘health_cos’ , respectively.
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")

health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. use ‘glimpse’ to get a glimpse of the data.
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "...
  1. Which variables are the same in both data sets.
names_drug  <- drug_cos  %>%  names()
names_health  <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with.
drug_subset  <- drug_cos  %>%
  select(ticker, year, grossmargin)  %>%
  filter(year == 2018)
health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>%
  filter(year == 2018)
  1. Keep all the rows and columns ‘drug_select’ join with columns in ‘health_subset’
drug_subset  %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin   revenue        gp industry              
   <chr>  <dbl>       <dbl>     <dbl>     <dbl> <chr>                 
 1 ZTS     2018       0.672   5.82e 9   3.91e 9 Drug Manufacturers - ~
 2 PRGO    2018       0.387   4.73e 9   1.83e 9 Drug Manufacturers - ~
 3 PFE     2018       0.79    5.36e10   4.24e10 Drug Manufacturers - ~
 4 MYL     2018       0.35    1.14e10   4.00e 9 Drug Manufacturers - ~
 5 MRK     2018       0.681   4.23e10   2.88e10 Drug Manufacturers - ~
 6 LLY     2018       0.738   2.46e10   1.81e10 Drug Manufacturers - ~
 7 JNJ     2018       0.668   8.16e10   5.45e10 Drug Manufacturers - ~
 8 GILD    2018       0.781   2.21e10   1.73e10 Drug Manufacturers - ~
 9 BMY     2018       0.71    2.26e10   1.60e10 Drug Manufacturers - ~
10 BIIB    2018       0.865   1.35e10   1.16e10 Drug Manufacturers - ~
11 AMGN    2018       0.827   2.37e10   1.96e10 Drug Manufacturers - ~
12 AGN     2018       0.861   1.58e10   1.36e10 Drug Manufacturers - ~
13 ABBV    2018       0.764   3.28e10   2.50e10 Drug Manufacturers - ~

Question join_ticker

drug_cos_subset  <- drug_cos  %>%
  filter(ticker == "JNJ")
drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 JNJ    John~ New Jer~        0.247       0.687     0.149 0.199 0.161
2 JNJ    John~ New Jer~        0.272       0.678     0.161 0.218 0.173
3 JNJ    John~ New Jer~        0.281       0.687     0.194 0.224 0.197
4 JNJ    John~ New Jer~        0.336       0.694     0.22  0.284 0.217
5 JNJ    John~ New Jer~        0.335       0.693     0.22  0.282 0.219
6 JNJ    John~ New Jer~        0.338       0.697     0.23  0.286 0.229
7 JNJ    John~ New Jer~        0.317       0.667     0.017 0.243 0.019
8 JNJ    John~ New Jer~        0.318       0.668     0.188 0.233 0.244
# ... with 1 more variable: year <dbl>
combo_df  <-  drug_cos_subset  %>%
  left_join(health_cos)

# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 JNJ    John~ New Jer~        0.247       0.687     0.149 0.199 0.161
2 JNJ    John~ New Jer~        0.272       0.678     0.161 0.218 0.173
3 JNJ    John~ New Jer~        0.281       0.687     0.194 0.224 0.197
4 JNJ    John~ New Jer~        0.336       0.694     0.22  0.284 0.217
5 JNJ    John~ New Jer~        0.335       0.693     0.22  0.282 0.219
6 JNJ    John~ New Jer~        0.338       0.697     0.23  0.286 0.229
7 JNJ    John~ New Jer~        0.317       0.667     0.017 0.243 0.019
8 JNJ    John~ New Jer~        0.318       0.668     0.188 0.233 0.244
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name  <-  combo_df  %>%
  distinct(name)  %>%
  pull()

co_location  <-  combo_df  %>%
  distinct(location)  %>%
  pull()
co_industry  <-  combo_df  %>%
  distinct(industry)  %>%
  pull() 

Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company JNJ is located in New Jersey and is a member of the drug manufacturers- general group.


combo_of_subset  <- combo_df  %>%
  select(year, grossmargin, netmargin, revenue, gp, netmargin)

combo_of_subset
# A tibble: 8 x 5
   year grossmargin netmargin     revenue          gp
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>
1  2011       0.687     0.149 65030000000 44670000000
2  2012       0.678     0.161 67224000000 45566000000
3  2013       0.687     0.194 71312000000 48970000000
4  2014       0.694     0.22  74331000000 51585000000
5  2015       0.693     0.22  70074000000 48538000000
6  2016       0.697     0.23  71890000000 50101000000
7  2017       0.667     0.017 76450000000 51011000000
8  2018       0.668     0.188 81581000000 54490000000

Create the variable ‘grossmargin_check’ to compare with the variable ‘grossmargin’. They should be equal. ‘grossmargin_check’ = ‘gp’ / ‘revenue’ Create the variable ‘close_enough’ to check that the absolute value of the difference between ‘grossmargin_check’ and ‘grossmargin’ is less than 0.001

combo_of_subset  %>%
  mutate(grossmargin_check = gp/ revenue,
         close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 7
   year grossmargin netmargin revenue      gp grossmargin_che~
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>            <dbl>
1  2011       0.687     0.149 6.50e10 4.47e10            0.687
2  2012       0.678     0.161 6.72e10 4.56e10            0.678
3  2013       0.687     0.194 7.13e10 4.90e10            0.687
4  2014       0.694     0.22  7.43e10 5.16e10            0.694
5  2015       0.693     0.22  7.01e10 4.85e10            0.693
6  2016       0.697     0.23  7.19e10 5.01e10            0.697
7  2017       0.667     0.017 7.64e10 5.10e10            0.667
8  2018       0.668     0.188 8.16e10 5.45e10            0.668
# ... with 1 more variable: close_enough <lgl>

combo_of_subset  %>%
  mutate(netmargin_check = gp/ revenue,
         close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 7
   year grossmargin netmargin revenue      gp netmargin_check
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>           <dbl>
1  2011       0.687     0.149 6.50e10 4.47e10           0.687
2  2012       0.678     0.161 6.72e10 4.56e10           0.678
3  2013       0.687     0.194 7.13e10 4.90e10           0.687
4  2014       0.694     0.22  7.43e10 5.16e10           0.694
5  2015       0.693     0.22  7.01e10 4.85e10           0.693
6  2016       0.697     0.23  7.19e10 5.01e10           0.697
7  2017       0.667     0.017 7.64e10 5.10e10           0.667
8  2018       0.668     0.188 8.16e10 5.45e10           0.668
# ... with 1 more variable: close_enough <lgl>

Question: summarize_industry

Fill in the blanks

Put the command you use in the Rchunks in the Rmd file for this quiz

Use the health_cos data

For each industry calculate

mean_netmargin_percent = mean(netincome / revenue) * 100 median_netmargin_percent = median(netincome / revenue) * 100 min_netmargin_percent = min(netincome / revenue) * 100 max_netmargin_percent = max(netincome / revenue) * 100

health_cos %>%
  group_by(industry)  %>%
  summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
            median_netmargin_percent = median(netincome / revenue) * 100,
            min_netmargin_percent = min(netincome / revenue) * 100,
            max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
  industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
* <chr>               <dbl>            <dbl>            <dbl>
1 Biotech~            -4.66             7.62         -197.   
2 Diagnos~            13.1             12.3             0.399
3 Drug Ma~            19.4             19.5           -34.9  
4 Drug Ma~             5.88             9.01          -76.0  
5 Healthc~             3.28             3.37           -0.305
6 Medical~             6.10             6.46            1.40 
7 Medical~            12.4             14.3           -56.1  
8 Medical~             1.70             1.03           -0.102
9 Medical~            12.3             14.0           -47.1  
# ... with 1 more variable: max_netmargin_percent <dbl>

mean_netmargin_percent for the industry Diagnostics & Research is 13.1%

median_netmargin_percent for the industry Diagnostics & Research is 12.3%

min_netmargin_percent for the industry Diagnostics & Research is .399%

max_netmargin_percent for the industry Diagnostics & Research is 26.3%


Question: inline_ticker

health_cos_subset  <- health_cos  %>%
  filter(ticker == "BMY")

*Display ‘health_cos_subset_’

health_cos_subset
# A tibble: 8 x 11
  ticker name  revenue      gp    rnd netincome  assets liabilities
  <chr>  <chr>   <dbl>   <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 BMY    Bris~ 2.12e10 1.56e10 3.84e9    3.71e9 3.30e10 17103000000
2 BMY    Bris~ 1.76e10 1.30e10 3.90e9    1.96e9 3.59e10 22259000000
3 BMY    Bris~ 1.64e10 1.18e10 3.73e9    2.56e9 3.86e10 23356000000
4 BMY    Bris~ 1.59e10 1.19e10 4.53e9    2.00e9 3.37e10 18766000000
5 BMY    Bris~ 1.66e10 1.27e10 5.92e9    1.56e9 3.17e10 17324000000
6 BMY    Bris~ 1.94e10 1.45e10 5.01e9    4.46e9 3.37e10 17360000000
7 BMY    Bris~ 2.08e10 1.47e10 6.48e9    1.01e9 3.36e10 21704000000
8 BMY    Bris~ 2.26e10 1.60e10 6.34e9    4.92e9 3.50e10 20859000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Bristol Myers Squibb Co"
co_name  <-  health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
co_industry  <-  health_cos_subset  %>%
  distinct(industry)  %>%
  pull()

The company Bristol Myers Squibb Co is a member of the drug manufacturers- general group. group.

  1. Prepare the data for the plots
df <- health_cos  %>%
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use ‘glimpse’ to look at the data for the plot
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
  1. Create a static bar chart.
ggplot(data = df, mapping = aes(
  x = reorder(industry, med_rnd_rev),
  y = med_rnd_rev
  )) +
  geom_col() +
  scale_y_continuous(labels = scales:: percent) +
  coord_flip() + 
  labs(
    title = "Median R&D expenditures", 
    subtitle = "by industrty as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_ipsum()

  1. Save the plot and add it to chunk at the top.
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2021-03-16-joining-data"))