Code for quiz 6, more dplyr and out first interactive chart using echarts4r
drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "...
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For ‘drug_cos’ select ‘ticker’, ‘year’, ‘grossmargin’
Extract observations for 2018
Assign output to ‘drug_subset’
For ‘health_cos’ select ‘ticker’, ‘year’, ‘revenue’, ‘gp’, ‘industry’
Extract observation for 2018
Assign output to ‘health_subset’
drug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, revenue, gp, industry) %>%
filter(year == 2018)
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - ~
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - ~
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - ~
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - ~
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - ~
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - ~
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - ~
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - ~
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - ~
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - ~
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - ~
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - ~
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - ~
Start with ‘drug_cos’
Extract observations for the ticker JNJ from ‘durg_cos’
Assign output to the variable ‘drug_cos_subset’
drug_cos_subset <- drug_cos %>%
filter(ticker == "JNJ")
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of ‘drug_cos_subset’ with the columns of ‘health_cos’
Assign the output to ‘combo_df’
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
co_name <- combo_df %>%
distinct(name) %>%
pull()
co_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company JNJ is located in New Jersey and is a member of the drug manufacturers- general group.
Start with ‘combo_df’
Select variables ‘year’, ‘grossmargin’, ‘netmargin’, ‘revenue’, ‘gp’, ‘netmargin’
combo_of_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netmargin)
combo_of_subset
# A tibble: 8 x 5
year grossmargin netmargin revenue gp
<dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000
2 2012 0.678 0.161 67224000000 45566000000
3 2013 0.687 0.194 71312000000 48970000000
4 2014 0.694 0.22 74331000000 51585000000
5 2015 0.693 0.22 70074000000 48538000000
6 2016 0.697 0.23 71890000000 50101000000
7 2017 0.667 0.017 76450000000 51011000000
8 2018 0.668 0.188 81581000000 54490000000
Create the variable ‘grossmargin_check’ to compare with the variable ‘grossmargin’. They should be equal. ‘grossmargin_check’ = ‘gp’ / ‘revenue’ Create the variable ‘close_enough’ to check that the absolute value of the difference between ‘grossmargin_check’ and ‘grossmargin’ is less than 0.001
combo_of_subset %>%
mutate(grossmargin_check = gp/ revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 7
year grossmargin netmargin revenue gp grossmargin_che~
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 0.687
2 2012 0.678 0.161 6.72e10 4.56e10 0.678
3 2013 0.687 0.194 7.13e10 4.90e10 0.687
4 2014 0.694 0.22 7.43e10 5.16e10 0.694
5 2015 0.693 0.22 7.01e10 4.85e10 0.693
6 2016 0.697 0.23 7.19e10 5.01e10 0.697
7 2017 0.667 0.017 7.64e10 5.10e10 0.667
8 2018 0.668 0.188 8.16e10 5.45e10 0.668
# ... with 1 more variable: close_enough <lgl>
Create the variable ‘netmargin_check’ to compare with the variable ‘netmargin’. They should be equal.
Create the variable ‘close_enough’ to check that the absolute value of the difference between ‘netmargin_check’ and ‘netmargin’ is less than 0.001
combo_of_subset %>%
mutate(netmargin_check = gp/ revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 7
year grossmargin netmargin revenue gp netmargin_check
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 6.50e10 4.47e10 0.687
2 2012 0.678 0.161 6.72e10 4.56e10 0.678
3 2013 0.687 0.194 7.13e10 4.90e10 0.687
4 2014 0.694 0.22 7.43e10 5.16e10 0.694
5 2015 0.693 0.22 7.01e10 4.85e10 0.693
6 2016 0.697 0.23 7.19e10 5.01e10 0.697
7 2017 0.667 0.017 7.64e10 5.10e10 0.667
8 2018 0.668 0.188 8.16e10 5.45e10 0.668
# ... with 1 more variable: close_enough <lgl>
Question: summarize_industry
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate
mean_netmargin_percent = mean(netincome / revenue) * 100 median_netmargin_percent = median(netincome / revenue) * 100 min_netmargin_percent = min(netincome / revenue) * 100 max_netmargin_percent = max(netincome / revenue) * 100
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
* <chr> <dbl> <dbl> <dbl>
1 Biotech~ -4.66 7.62 -197.
2 Diagnos~ 13.1 12.3 0.399
3 Drug Ma~ 19.4 19.5 -34.9
4 Drug Ma~ 5.88 9.01 -76.0
5 Healthc~ 3.28 3.37 -0.305
6 Medical~ 6.10 6.46 1.40
7 Medical~ 12.4 14.3 -56.1
8 Medical~ 1.70 1.03 -0.102
9 Medical~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
mean_netmargin_percent for the industry Diagnostics & Research is 13.1%
median_netmargin_percent for the industry Diagnostics & Research is 12.3%
min_netmargin_percent for the industry Diagnostics & Research is .399%
max_netmargin_percent for the industry Diagnostics & Research is 26.3%
Question: inline_ticker
Fill in the blanks
Use the health_cos data
Extract observations for the ticker BMY from health_cos and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "BMY")
*Display ‘health_cos_subset_’
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BMY Bris~ 2.12e10 1.56e10 3.84e9 3.71e9 3.30e10 17103000000
2 BMY Bris~ 1.76e10 1.30e10 3.90e9 1.96e9 3.59e10 22259000000
3 BMY Bris~ 1.64e10 1.18e10 3.73e9 2.56e9 3.86e10 23356000000
4 BMY Bris~ 1.59e10 1.19e10 4.53e9 2.00e9 3.37e10 18766000000
5 BMY Bris~ 1.66e10 1.27e10 5.92e9 1.56e9 3.17e10 17324000000
6 BMY Bris~ 1.94e10 1.45e10 5.01e9 4.46e9 3.37e10 17360000000
7 BMY Bris~ 2.08e10 1.47e10 6.48e9 1.01e9 3.36e10 21704000000
8 BMY Bris~ 2.26e10 1.60e10 6.34e9 4.92e9 3.50e10 20859000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ‘?distinct’. Go to the help pane to see what distinct does
In the console, type ‘?pull’. Go to the help pane to see what pull does
Run the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Bristol Myers Squibb Co"
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
The name of the company with ticker BMY is Bristol Myers Squibb Co In following chuck
Assign the company’s industry group to the variable co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
The company Bristol Myers Squibb Co is a member of the drug manufacturers- general group. group.
df %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
ggplot(data = df, mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales:: percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industrty as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-16-joining-data"))